25匹馬,找出最快的3匹,但是只有5個賽道,每次比賽只能得到5匹馬的速度排序,那么最少需要多少次比賽


筆試題:25匹馬,找出最快的3匹,但是只有5個賽道,每次比賽只能得到5匹馬的速度排序,那么最少需要多少次比賽


在網上搜了下答案,好像不靠譜。

最后在英文網站上找到正確的答案:? 次

參考:http://www.programmerinterview.com/index.php/puzzles/25-horses-3-fastest-5-races-puzzle/


1-5 場:

將25匹馬分為5組,每組5匹,得到下面的排序,每組最快的馬在左側,即X1、X6、X11、X16、X21分別是每組中最快的。

組1:X1  X2  X3  X4  X5 
組2:X6 X7 X8 X9 X10
組3:X11 X12 X13 X14 X15
組4:X16 X17 X18 X19 X20
組5:X21 X22 X23 X24 X25

但是,現在還不能說最快的3匹馬在X1、X6、X11、X16、X21中,因為有可能最快的3匹馬全部分在第一組中,即有可能出現X2比X6快。

但是我們肯定可以知道,每組的最后2名肯定不會是最快的3匹馬,那么排除X4、X5;X9、X10;X14、X15;X19、X20;X24、X25;


第6場:

X1  X2  X3  
X6 X7 X8
X11 X12 X13
X16 X17 X18
X21 X22 X23

參賽的為每組的第1名:X1、X6、X11、X16、X21,假設速度排序為X1、X6、X11、X16、X21。

那么我們可以知道,X16、X21及其后面的X17、X18;X22、X23均不可能是最快的3匹馬。


第7場:

X1  X2  X3  
X6 X7 X8
X11 X12 X13


目前,我們可以知道,X1是25匹馬中最快的,但是X2、X6、X3、X7、X11之間的速度還不確定,需要再一次比賽,而X8、X12、X13不可能是最快的前3名。

參賽的為:X2、X6、X3、X7、X11,速度最快的2匹加上X1構成最快的3匹馬。


因此一共需要7次比賽。





注意!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系我们删除。



 
粤ICP备14056181号  © 2014-2020 ITdaan.com