線性代數入門(1) - 什么是線性代數?


線性代數幾乎是每個學理工科的大學生都會學的一門課,然而我感覺大家對這門課的感覺都不怎么好,很多人都覺得不知道線性代數是做什么的,或者為了應付考試學會了一些計算和解題的方法。但在其他課程學習中卻常常看到那些矩陣、向量等等,便頭疼萬分,對線性代數更是深惡痛絕。最后一個大學學下來,還是沒明白線性代數是什么東西,更別說去用其中的方法了。所以我一直想寫一些關於線性代數的東西,說說自己的理解,一者給自己整理整理思路,二者或許能給一些恰好看到的朋友們一些啟發。學疏才淺,自己也只是一知半解,大家多多包涵。

說了那么多廢話,到底什么是線性代數呢?實際上我們在中學里就早已經學過了。只是我們沒用那些神秘的符號,而很多大學的老師只照着課本講了一遍,反倒讓大家把線性代數里最最原始和簡單的東西給丟掉了,以至於覺得線性代數很難,不知所雲。

相信大家在中學里一定會解方程吧?還記得多元一次方程嗎?會解這些方程,就一定能很快學會線性代數。因為這兩者描述的原本就是同一個事物,只是用了不同的語言而已。

讓我們從最簡單的方程看起:ax=b
其中x是變量,a和b是常量。這個方程人人會解,大家都知道x=b/a,當然,前提條件是a不等於0。
如果要總結一下這個方程的解,應該是這個樣子:
x=nosolutionanyvalueb/aa=0andb0a=0andb=0a0

這個是一元一次方程,也就是線性代數最簡單的原型,這個和我們的矩陣似乎是風馬牛不相及的東西,然而這卻是是最簡單的形式,那些復雜的情況我們也希望能變成這樣的形式,一切就將是統一、簡單和漂亮的。

讓我們增加一些未知數。我們還是秉承簡單的原則,來看一個二元一次方程組。
{2x1+3x2=74x1+5x2=13

如果你還記得怎么求解二元一次方程組的話(還記得加減消元法和代入消元法嗎?),很容易可以求出x1=2,x2=1
對於三元一次方程組,甚至於更多元的方程組,估計求解起來就要復雜一些。其實,加減消元法和代入消元法這兩招就足夠解決它們,只是,如果我們能有一個標准的算法來求解就可以少走很多冤枉路,很快得到結果。后面,我們會有機會去使用這個解法,一個用一位偉大數學家名字命名的解法。

說了那么久的解方程,還是沒有看到線性代數在哪里。那好,我們現在要變一個魔術。剛才,對於不同的未知數個數,我們分別有一個名字:一元一次方程、二元一次方程組、三元一次方程組……現在我們給他們統一一個名字:線性方程組。看到一點線性代數的影子了嗎?很好,就在於“線性”兩個字,這里的未知數都是一次的。事實上,線性方程組里就包含了線性代數大部分的內容。線性代數就是那么簡單,再重復一下,線性代數——線性方程組。



注意!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系我们删除。



 
  © 2014-2022 ITdaan.com 联系我们: