R語言 igraph——圖挖掘助力社會網絡分析


該文章出自http://www.ituring.com.cn/article/1762,介紹了igraph包,igraph包可統計分析網絡圖的幾何特征,還包括圖上的很多經典算法,例如最大連通圖、最短路徑等。

社交網絡(如Facebook,Twitter)可以完整地表現人們的生活。人們用不同的方式與他人互動,並且這些信息都可以在社交網絡中抓取到。挖掘某個站點的有用信息可以幫助一些團體增加競爭力。

我最近無意中發現一款叫做“iGraph”的工具,它提供了一些非常有效的挖掘功能。以下列舉幾條我覺得有意思的:

創建圖表

圖表由節點和連線組成,兩者都可以附上一系列屬性值(鍵/值對)。此外,連線可以是有向的也可以是無向的,還可以給它加上權重。

> library(igraph)
> # Create a directed graph
> g <- graph(c(0,1, 0,2, 1,3, 0,3), directed=T)
> g
Vertices: 4
Edges: 4
Directed: TRUE
Edges:

[0] 0 -> 1
[1] 0 -> 2
[2] 1 -> 3
[3] 0 -> 3
> # Create a directed graph using adjacency matrix
> m <- matrix(runif(4*4), nrow=4)
> m
[,1] [,2] [,3] [,4]
[1,] 0.4086389 0.2160924 0.1557989 0.2896239
[2,] 0.4669456 0.1071071 0.1290673 0.3715809
[3,] 0.2031678 0.3911691 0.5906273 0.7417764
[4,] 0.8808119 0.7687493 0.9734323 0.4487252
> g <- graph.adjacency(m > 0.5)
> g
Vertices: 4
Edges: 5
Directed: TRUE
Edges:

[0] 2 -> 2
[1] 2 -> 3
[2] 3 -> 0
[3] 3 -> 1
[4] 3 -> 2
> plot(g, layout=layout.fruchterman.reingold)
>

enter image description here

iGraph也提供了多種創建各種圖形的圖表的簡單方法

> #Create a full graph
> g1 <- graph.full(4)
> g1
Vertices: 4
Edges: 6
Directed: FALSE
Edges:

[0] 0 -- 1
[1] 0 -- 2
[2] 0 -- 3
[3] 1 -- 2
[4] 1 -- 3
[5] 2 -- 3
> #Create a ring graph
> g2 <- graph.ring(3)
> g2
Vertices: 3
Edges: 3
Directed: FALSE
Edges:

[0] 0 -- 1
[1] 1 -- 2
[2] 0 -- 2
> #Combine 2 graphs
> g <- g1 %du% g2
> g
Vertices: 7
Edges: 9
Directed: FALSE
Edges:

[0] 0 -- 1
[1] 0 -- 2
[2] 0 -- 3
[3] 1 -- 2
[4] 1 -- 3
[5] 2 -- 3
[6] 4 -- 5
[7] 5 -- 6
[8] 4 -- 6
> graph.difference(g, graph(c(0,1,0,2), directed=F))
Vertices: 7
Edges: 7
Directed: FALSE
Edges:

[0] 0 -- 3
[1] 1 -- 3
[2] 1 -- 2
[3] 2 -- 3
[4] 4 -- 6
[5] 4 -- 5
[6] 5 -- 6
> # Create a lattice
> g1 = graph.lattice(c(3,4,2))
> # Create a tree
> g2 = graph.tree(12, children=2)
> plot(g1, layout=layout.fruchterman.reingold)
> plot(g2, layout=layout.reingold.tilford)

enter image description here

enter image description here

iGraph還提供了另外兩種圖表生成的機制。“隨機圖表”可以在任意兩個節點之間進行連線。而“優先連接”會給已經擁有較大度數的節點再增加連線(也就是多者更多)。

# Generate random graph, fixed probability
> g <- erdos.renyi.game(20, 0.3)
> plot(g, layout=layout.fruchterman.reingold, vertex.label=NA, vertex.size=5)

# Generate random graph, fixed number of arcs
> g <- erdos.renyi.game(20, 15, type='gnm')

# Generate preferential attachment graph
> g <- barabasi.game(60, power=1, zero.appeal=1.3)

enter image description here

簡單圖表算法

這一節會介紹如何使用iGraph來實現一些簡單的圖表算法。

最小生成樹算法可以在圖表里連接所有的節點,並使所有的連線權重最小。

# Create the graph and assign random edge weights
> g <- erdos.renyi.game(12, 0.35)
> E(g)$weight <- round(runif(length(E(g))),2) * 50
> plot(g, layout=layout.fruchterman.reingold, edge.label=E(g)$weight)
# Compute the minimum spanning tree
> mst <- minimum.spanning.tree(g)
> plot(mst, layout=layout.reingold.tilford, edge.label=E(mst)$weight)

enter image description here

連通分支算法可以找到會連通其他節點的連接,也就是說,兩個節點之間的路徑會穿過其他節點。需要注意的是,在無向圖里連通是要對稱的,在有向圖(節點A指向節點B,但節點B不指向節點A的圖表)里不是必須的。因此在有向圖中存在一種連接的概念叫做“強”,也就是只有兩個節點都分別指向對方才意味着它們是連通的。“弱”的連接意味着它們不是連通的。

> g <- graph(c(0, 1, 1, 2, 2, 0, 1, 3, 3, 4, 4, 5, 5, 3, 4, 6, 6, 7, 7, 8, 8, 6, 9, 10, 10, 11, 11, 9))
# Nodes reachable from node4
> subcomponent(g, 4, mode="out")
[1] 4 5 6 3 7 8
# Nodes who can reach node4
> subcomponent(g, 4, mode="in")
[1] 4 3 1 5 0 2

> clusters(g, mode="weak")
$membership
[1] 0 0 0 0 0 0 0 0 0 1 1 1
$csize
[1] 9 3
$no
[1] 2

> myc <- clusters(g, mode="strong")
> myc
$membership
[1] 1 1 1 2 2 2 3 3 3 0 0 0
$csize
[1] 3 3 3 3
$no
[1] 4

> mycolor <- c('green', 'yellow', 'red', 'skyblue')
> V(g)$color <- mycolor[myc$membership + 1]
> plot(g, layout=layout.fruchterman.reingold)

最短路徑算法是最普遍的算法,它能找到節點A和節點B之間最短的路徑。在iGraph里,如果圖表是未加權的(也就是權重為1的)而且在權重為正時使用了迪傑斯特拉算法,會使用“breath-first search”算法。要是連線的權重是負數,則會使用Bellman-ford算法。

> g <- erdos.renyi.game(12, 0.25)
> plot(g, layout=layout.fruchterman.reingold)
> pa <- get.shortest.paths(g, 5, 9)[[1]]
> pa
[1] 5 0 4 9
> V(g)[pa]$color <- 'green'
> E(g)$color <- 'grey'
> E(g, path=pa)$color <- 'red'
> E(g, path=pa)$width <- 3
> plot(g, layout=layout.fruchterman.reingold)

enter image description here

圖表統計

通過大量統計信息我們可以大致看到圖表的形狀。在最高權限下,我們可以看到圖表的各類信息,它包括:
- 圖表的大小(節點和連線的數量)
- 圖表的密度是緊密的(|E|與|V|的平方成正比)還是稀疏的(|E|與|V|成正比)?
- 圖表是連通的(大部分節點是互通的)還是非連通的(節點是孤立的)?
- 圖表中最長的兩點之間距離
- 有向圖的對稱性
- 出/入“度”的分布

> # Create a random graph 
> g <- erdos.renyi.game(200, 0.01)
> plot(g, layout=layout.fruchterman.reingold, vertex.label=NA, vertex.size=3)
> # No of nodes
> length(V(g))
[1] 200
> # No of edges
> length(E(g))
[1] 197
> # Density (No of edges / possible edges)
> graph.density(g)
[1] 0.009899497
> # Number of islands
> clusters(g)$no
[1] 34
> # Global cluster coefficient:
> #(close triplets/all triplets)
> transitivity(g, type="global")
[1] 0.015
> # Edge connectivity, 0 since graph is disconnected
> edge.connectivity(g)
[1] 0
> # Same as graph adhesion
> graph.adhesion(g)
[1] 0
> # Diameter of the graph
> diameter(g)
[1] 18
> # Reciprocity of the graph
> reciprocity(g)
[1] 1
> # Diameter of the graph
> diameter(g)
[1] 18
> # Reciprocity of the graph
> reciprocity(g)
[1] 1
> degree.distribution(g)
[1] 0.135 0.280 0.315 0.110 0.095 0.050 0.005 0.010
> plot(degree.distribution(g), xlab="node degree")
> lines(degree.distribution(g))

enter image description here

往下一點,我們也可以看到每對節點的統計信息,比如:
- 計算兩點之間沒有公用連線的路徑(也就是需要移除多少條連線可以使兩節點不連通)
- 計算兩點之間的最短路徑
- 計算兩點之間路徑的數量和長度

> # Create a random graph
> g <- erdos.renyi.game(9, 0.5)
> plot(g, layout=layout.fruchterman.reingold)
> # Compute the shortest path matrix
> shortest.paths(g)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 0 1 3 1 2 2 1 3 2
[2,] 1 0 2 2 3 2 2 2 1
[3,] 3 2 0 2 1 2 2 2 1
[4,] 1 2 2 0 3 1 2 2 1
[5,] 2 3 1 3 0 3 1 3 2
[6,] 2 2 2 1 3 0 2 1 1
[7,] 1 2 2 2 1 2 0 2 1
[8,] 3 2 2 2 3 1 2 0 1
[9,] 2 1 1 1 2 1 1 1 0
> # Compute the connectivity matrix
> M <- matrix(rep(0, 81), nrow=9)
> M
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 0 0 0 0 0 0 0 0 0
[2,] 0 0 0 0 0 0 0 0 0
[3,] 0 0 0 0 0 0 0 0 0
[4,] 0 0 0 0 0 0 0 0 0
[5,] 0 0 0 0 0 0 0 0 0
[6,] 0 0 0 0 0 0 0 0 0
[7,] 0 0 0 0 0 0 0 0 0
[8,] 0 0 0 0 0 0 0 0 0
[9,] 0 0 0 0 0 0 0 0 0
> for (i in 0:8) {
+ for (j in 0:8) {
+ if (i == j) {
+ M[i+1, j+1] <- -1
+ } else {
+ M[i+1, j+1] <- edge.connectivity(g, i, j)
+ }
+ }
+ }
> M
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] -1 2 2 3 2 3 3 2 3
[2,] 2 -1 2 2 2 2 2 2 2
[3,] 2 2 -1 2 2 2 2 2 2
[4,] 3 2 2 -1 2 3 3 2 3
[5,] 2 2 2 2 -1 2 2 2 2
[6,] 3 2 2 3 2 -1 3 2 3
[7,] 3 2 2 3 2 3 -1 2 3
[8,] 2 2 2 2 2 2 2 -1 2
[9,] 3 2 2 3 2 3 3 2 -1
>

enter image description here

中心性計算

在細節方面,我們可以看到各個節點的統計信息。根據這些數字可以測出節點的“中心性”
- 擁有較高出/入度數的節點也擁有較高的“度中心性”
- 與其他節點之間有短路徑的節點擁有較高的“密集中心性”
- 與其他節點對之間有最短路徑的節點擁有較高的“中間性”
- 連接了許多中心性較高節點的節點擁有較高的“特征向量中心性”
- 本地簇系數意味着相鄰節點的互聯性

> # Degree
> degree(g)
[1] 2 2 2 2 2 3 3 2 6
> # Closeness (inverse of average dist)
> closeness(g)
[1] 0.4444444 0.5333333 0.5333333 0.5000000
[5] 0.4444444 0.5333333 0.6153846 0.5000000
[9] 0.8000000
> # Betweenness
> betweenness(g)
[1] 0.8333333 2.3333333 2.3333333
[4] 0.0000000 0.8333333 0.5000000
[7] 6.3333333 0.0000000 18.8333333
> # Local cluster coefficient
> transitivity(g, type="local")
[1] 0.0000000 0.0000000 0.0000000 1.0000000
[5] 0.0000000 0.6666667 0.0000000 1.0000000
[9] 0.1333333
> # Eigenvector centrality
> evcent(g)$vector
[1] 0.3019857 0.4197153 0.4197153 0.5381294
[5] 0.3019857 0.6693142 0.5170651 0.5381294
[9] 1.0000000
> # Now rank them
> order(degree(g))
[1] 1 2 3 4 5 8 6 7 9
> order(closeness(g))
[1] 1 5 4 8 2 3 6 7 9
> order(betweenness(g))
[1] 4 8 6 1 5 2 3 7 9
> order(evcent(g)$vector)
[1] 1 5 2 3 7 4 8 6 9

從中Drew Conway發現擁有低“特征向量中心性”和高“中間性”的人是很重要的聯系人,而擁有高“特征向量中心性”和低“中間性”的人與重要的人有關聯。現在我們來繪制“特征向量中心性”和“中間性”的圖表。

> # Create a graph
> g1 <- barabasi.game(100, directed=F)
> g2 <- barabasi.game(100, directed=F)
> g <- g1 %u% g2
> lay <- layout.fruchterman.reingold(g)
> # Plot the eigevector and betweenness centrality
> plot(evcent(g)$vector, betweenness(g))
> text(evcent(g)$vector, betweenness(g), 0:100, cex=0.6, pos=4)
> V(g)[12]$color <- 'red'
> V(g)[8]$color <- 'green'
> plot(g, layout=lay, vertex.size=8, vertex.label.cex=0.6)

enter image description here

在之后的帖子里我還會介紹一些特殊的社交網絡分析的例子。

有任何問題想跟我交流,請加qq群636866908(Python&大數據)與我聯系,或者加qq群456726635(R語言&大數據分析)也可。



enter image description here

注意!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系我们删除。



 
粤ICP备14056181号  © 2014-2020 ITdaan.com