关于梯度下降 - 线性回归的


有了线性方程以及他的代价函数:

 

 

然后我们的目标就是通过调整 theta0, theta1 最小化 J 的值。

那么梯度下降算法的公式如下:

     alpha 是学习率,后面是对J和theta求偏导,以便得到这个点斜率,如果斜率为正就逐渐缩小theta,这样就逐步的调整到适合的theta

在Octave中表示为:

theta = theta - (alpha/m) * X' * (X*theta - y)  循环调用这个计算多次已达到收敛。

最后就能得出这样一组 theta

智能推荐

注意!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系我们删除。



猜您在找
线性回归及梯度下降 线性回归与梯度下降 线性回归——梯度下降 线性回归——梯度下降 线性回归与梯度下降
智能推荐
 
© 2014-2019 ITdaan.com 粤ICP备14056181号  

赞助商广告