Spark算子:RDD行动Action操作(4)–countByKey、foreach、foreachPartition、sortBy


countByKey

def countByKey(): Map[K, Long]

countByKey用于统计RDD[K,V]中每个K的数量。
scala> var rdd1 = sc.makeRDD(Array(("A",0),("A",2),("B",1),("B",2),("B",3)))
rdd1: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[7] at makeRDD at :21

scala> rdd1.countByKey
res5: scala.collection.Map[String,Long] = Map(A -> 2, B -> 3)


foreach

def foreach(f: (T) ⇒ Unit): Unit
foreach用于遍历RDD,将函数f应用于每一个元素。
但要注意,如果对RDD执行foreach,只会在Executor端有效,而并不是Driver端。
比如:rdd.foreach(println),只会在Executor的stdout中打印出来,Driver端是看不到的。

我在Spark1.4中是这样,不知道是否真如此。

这时候,使用accumulator共享变量与foreach结合,倒是个不错的选择。
scala> var cnt = sc.accumulator(0)
cnt: org.apache.spark.Accumulator[Int] = 0

scala> var rdd1 = sc.makeRDD(1 to 10,2)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[5] at makeRDD at :21

scala> rdd1.foreach(x => cnt += x)

scala> cnt.value
res51: Int = 55

scala> rdd1.collect.foreach(println)
1
2
3
4
5
6
7
8
9
10

foreachPartition

def foreachPartition(f: (Iterator[T]) ⇒ Unit): Unit

foreachPartition和foreach类似,只不过是对每一个分区使用f。
scala> var rdd1 = sc.makeRDD(1 to 10,2)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[5] at makeRDD at :21

scala> var allsize = sc.accumulator(0)
size: org.apache.spark.Accumulator[Int] = 0

scala> var rdd1 = sc.makeRDD(1 to 10,2)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[6] at makeRDD at :21

scala> rdd1.foreachPartition { x => {
| allsize += x.size
| }}

scala> println(allsize.value)
10
sortBy

def sortBy[K](f: (T) ⇒ K, ascending: Boolean = true, numPartitions: Int = this.partitions.length)(implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[T]

sortBy根据给定的排序k函数将RDD中的元素进行排序。
scala> var rdd1 = sc.makeRDD(Seq(3,6,7,1,2,0),2)

scala> rdd1.sortBy(x => x).collect
res1: Array[Int] = Array(0, 1, 2, 3, 6, 7) //默认升序

scala> rdd1.sortBy(x => x,false).collect
res2: Array[Int] = Array(7, 6, 3, 2, 1, 0) //降序

//RDD[K,V]类型
scala>var rdd1 = sc.makeRDD(Array(("A",2),("A",1),("B",6),("B",3),("B",7)))

scala> rdd1.sortBy(x => x).collect
res3: Array[(String, Int)] = Array((A,1), (A,2), (B,3), (B,6), (B,7))

//按照V进行降序排序
scala> rdd1.sortBy(x => x._2,false).collect
res4: Array[(String, Int)] = Array((B,7), (B,6), (B,3), (A,2), (A,1))

智能推荐

注意!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系我们删除。



 
© 2014-2019 ITdaan.com 粤ICP备14056181号  

赞助商广告